Python教程
资源名称:Python机器学习 PDF 作者简介: Sebastian Raschka是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客Analytics Vidhya评为GitHub上具影响力的数据科学家。他有一整年都使用Python进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为Sebastian 在数据科学、机器学习以及Python等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如Kaggle等)中。在业余时间,他沉醉于构建体育运动的预测模型,要么待在电脑前,要么在运动。 资源目录: 译者序推荐序作者简介审校者简介前言第1章 赋予计算机学习数据的能力11.1构建智能机器将数据转化为知识11.2 机器学习的三种不同方法11.2.1 通过监督学习对未来事件进行预测21.2.2 通过强化学习解决交互式问题41.2.3 通过无监督学习发现数据本身潜在的结构41.2.4 基本术语及符号介绍51.3 构建机器学习系统的蓝图61.3.1 数据预处理61.3.2 选择预测模型类型并进行训练71.3.3 模型验证与使用未知数据进行预测81.4 Python在机器学习中的应用8本章小结9第2章 机器学习分类算法102.1 人造神经元—早期机器学习概览102.2 使用Python实现感知器学习算法132.3 自适应线性神经元及其学习的收敛性192.3.1 通过梯度下降最小化代价函数202.3.2 使用Python实现自适应线性神经元212.3.3 大规模机器学习与随机梯度下降25本章小结29第3章 使用scikit-learn实现机器学习分类算法303.1 分类算法的选择303.2 初涉scikit-learn的使用30使用scikit-learn训练感知器313.3 逻辑斯谛回归中的类别概率343.3.1 初识逻辑斯谛回归与条件概率343.3.2 通过逻辑斯谛回归模型的代价函数获得权重363.3.3 使用scikit-learn训练逻辑斯谛回归模型373.3.4 通过正则化解决过拟合问题393.4 使用支持向量机最大化分类间隔413.4.1 对分类间隔最大化的直观认识413.4.2 使用松弛变量解决非线性可分问题423.4.3 使用scikit-learn实现SVM443.5 使用核SVM解决非线性问题443.6 决策树483.6.1 最大化信息增益—获知尽可能准确的结果493.6.2 构建决策树523.6.3 通过随机森林将弱分类器集成为强分类器533.7...