Python机器学习实践指南_Python教程
资源名称:Python机器学习实践指南 内容简介: 机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致。 全书共有10 章。第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。 本书适合Python 程序员、数据分析人员、对算法感兴趣的读者、机器学习领域的从业人员及科研人员阅读。 作者简介: Alexander T. Combs 是一位经验丰富的数据科学家、策略师和开发人员。他有金融数据抽取、自然语言处理和生成,以及定量和统计建模的背景。他目前是纽约沉浸式数据科学项目的一名全职资深讲师。 资源目录: 第1章Python机器学习的生态系统1 1.1数据科学/机器学习的工作流程2 1.1.1获取2 1.1.2检查和探索2 1.1.3清理和准备3 1.1.4建模3 1.1.5评估3 1.1.6部署3 1.2Python库和功能3 1.2.1获取4 1.2.2检查4 1.2.3准备20 1.2.4建模和评估26 1.2.5部署34 1.3设置机器学习的环境34 1.4小结34 第2章构建应用程序,发现低价的公寓35 2.1获取公寓房源数据36 使用import.io抓取房源数据36 2.2检查和准备数据38 2.2.1分析数据46 2.2.2可视化数据50 2.3对数据建模51 2.3.1预测54 2.3.2扩展模型57 2.4小结57...









